Both sides previous revisionPrevious revisionNext revision | Previous revision |
ap_calculus_ab [2024/04/10 07:50] – mrdough | ap_calculus_ab [2024/05/12 23:54] (current) – [AP Calc AB Study Guide] 172.88.72.108 |
---|
====== AP Calc AB Study Guide ====== | ====== AP Calc AB Study Guide ====== |
| * Credit: Simplestudies.org |
| * This study guide has a lot of images so if u cant scroll to the very bottom without jittering just let it load for a bit |
| * Here is a Cheat Sheet/Shorter and compressed version of what's described. [[https://drive.google.com/file/d/1oTnZ5zSmNq0RWiAuZzW8q0ki5WLdhy70/view?usp=sharing|Final Notes for AB and BC]] |
| * Limit evaluation chart: [[https://drive.google.com/file/d/1bhdygywT-doVSjAEXM8BYZGj5CiAtQEV/view?usp=sharing|here]] |
| * Key words pdf [[https://drive.google.com/file/d/1MXi1LwqLF00C2uRe8h-i3E1SBnJdSmrk/view?usp=sharing|here]] |
====== Unit 1 – Limits and Continuity ====== | ====== Unit 1 – Limits and Continuity ====== |
| |
[[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_11|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_11.png}}]]that means f(x) equals h(x) and g(x) | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_11|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_11.png}}]]that means f(x) equals h(x) and g(x) |
| |
====== Unit 2 - Differentiation: Definition and Basic DerivativeRules ====== | ====== Unit 2 - Differentiation: Definition and Basic Derivative Rules ====== |
| |
**What is a derivative?** | **What is a derivative?** |
* The derivative of f(x) is denoted as f’(x) or | * The derivative of f(x) is denoted as f’(x) or |
| |
[[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_12|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_12.png}}]]**Derivatives as Limits** | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_12|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_12.png}}]] |
| **Derivatives as Limits** |
| |
[[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_13|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_13.png}}]]**Steps to find derivatives as limits:** | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_13|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_13.png}}]] |
| **Steps to find derivatives as limits:** |
| |
- Identify the form of the derivative first (look at the image above)… is it form a? b? c? | - Identify the form of the derivative first (look at the image above)… is it form a? b? c? |
[[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_14|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_14.png}}]][[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_15|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_15.png}}]][[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_16|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_16.png}}]]**Derivatives of Trigonometric Functions:** | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_14|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_14.png}}]][[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_15|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_15.png}}]][[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_16|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_16.png}}]]**Derivatives of Trigonometric Functions:** |
| |
[[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_17|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_17.png}}]] * HINT: If the original function starts with C, then the derivative is negative! | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_17|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_17.png}}]] |
| * HINT: If the original function starts with C, then the derivative is negative! |
* Example: cosx, cotx, & cscx | * Example: cosx, cotx, & cscx |
| |
**Derivative Rule for LN** | **Derivative Rule for LN** |
| |
[[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_18|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_18.png}}]] * HINT: [Derive over copy] | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_18|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_18.png}}]] |
| * HINT: [Derive over copy] |
* Example: h(x) = ln(2x^2 + 1) | * Example: h(x) = ln(2x^2 + 1) |
* First derive 2x^2 + 1. That would be 4x! And then put that over theoriginal function, which would be 2x^2 + 1. | * First derive 2x^2 + 1. That would be 4x! And then put that over theoriginal function, which would be 2x^2 + 1. |
**Deriving Exponential Functions** | **Deriving Exponential Functions** |
| |
[[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_19|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_19.png}}]]**Continuity** | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_19|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_19.png}}]] |
| |
| **Continuity** |
| |
A function f is continuous at “c” if: | A function f is continuous at “c” if: |
Example: | Example: |
| |
[[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_20|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_20.png}}]][[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_21|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_21.png}}]]====== Unit 3 - Differentiation: Composite, Implicit, and InverseFunctions ====== | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_20|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_20.png}}]][[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_21|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_21.png}}]] |
| ====== Unit 3 - Differentiation: Composite, Implicit, and InverseFunctions ====== |
| |
**The Chain Rule** | **The Chain Rule** |
[[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_29|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_29.png}}]][[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_30|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_30.png}}]]**Higher-Order Derivatives** | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_29|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_29.png}}]][[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_30|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_30.png}}]]**Higher-Order Derivatives** |
| |
[[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_31|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_31.png}}]]====== Unit 4 - Contextual Applications of Differentiation ====== | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_31|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_31.png}}]] |
| ====== Unit 4 - Contextual Applications of Differentiation ====== |
| |
**Particle Motion** | **Particle Motion** |