Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
ap_calculus_ab [2024/04/10 07:50] – mrdough | ap_calculus_ab [2024/05/12 23:54] (current) – [AP Calc AB Study Guide] 172.88.72.108 | ||
---|---|---|---|
Line 1: | Line 1: | ||
====== AP Calc AB Study Guide ====== | ====== AP Calc AB Study Guide ====== | ||
+ | * Credit: Simplestudies.org | ||
+ | * This study guide has a lot of images so if u cant scroll to the very bottom without jittering just let it load for a bit | ||
+ | * Here is a Cheat Sheet/ | ||
+ | * Limit evaluation chart: [[https:// | ||
+ | * Key words pdf [[https:// | ||
====== Unit 1 – Limits and Continuity ====== | ====== Unit 1 – Limits and Continuity ====== | ||
Line 7: | Line 11: | ||
* A limit refers to the y-value of a function | * A limit refers to the y-value of a function | ||
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61: | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61: |
- | * The general limit exists when the right and left limits are the same/ | + | * The general limit exists when the right and left limits are the same_equal |
* DNE = does not exist. | * DNE = does not exist. | ||
- | // | + | __Examples |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%201|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%201.png}}]]Example of using a graph to find a limit:\\ \\ | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_1|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_1.png}}]]Example of using a graph to find a limit:\\ \\ |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%202|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%202.png}}]]**When limits don’t exist:**\\ When the Left limit ≠ Right limit, then the limit is said to not exist.\\ | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_2|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_2.png}}]]**When limits don’t exist:**\\ When the Left limit ≠ Right limit, then the limit is said to not exist.\\ |
* In the picture below, you can tell that the two limits don’t equal each other, thus theanswer to this limit is DNE. | * In the picture below, you can tell that the two limits don’t equal each other, thus theanswer to this limit is DNE. | ||
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%203|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%203.png}}]]**Unbounded Behavior:** | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_3|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_3.png}}]]**Unbounded Behavior:** |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%204|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%204.png}}]]**Evaluating Limits Analytically: | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_4|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_4.png}}]]**Evaluating Limits Analytically: |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%205|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%205.png}}]]**Limits Theorem:\\ Given:\\ ** Lim and Lim | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_5|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_5.png}}]]**Limits Theorem:\\ Given:\\ ** Lim and Lim |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%206|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%206.png}}]]**Limits at Infinity:** | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_6|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_6.png}}]]**Limits at Infinity:** |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%207|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%207.png}}]] | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_7|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_7.png}}]] |
- | * If m=n, then the limit equals | + | * If m=n, then the limit equals |
* If m>n, then the limit DNE | * If m>n, then the limit DNE | ||
Line 36: | Line 40: | ||
**Finding Vertical Asymptotes**\\ The only step you have to do is\\ **set the denominator equal to zero and solve.** | **Finding Vertical Asymptotes**\\ The only step you have to do is\\ **set the denominator equal to zero and solve.** | ||
- | * Example: [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%208|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%208.png}}]] | + | * Example: [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_8|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_8.png}}]] |
* (x+2)(x-2) = 0 → x = 2, -2 | * (x+2)(x-2) = 0 → x = 2, -2 | ||
* 2 is a removable hole while -2 is the non-removable vertical asymptote. | * 2 is a removable hole while -2 is the non-removable vertical asymptote. | ||
Line 42: | Line 46: | ||
Finding Horizontal Asymptotes\\ Use the\\ **two terms of the highest degree in the numerator and denominator** | Finding Horizontal Asymptotes\\ Use the\\ **two terms of the highest degree in the numerator and denominator** | ||
- | * Example [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%209|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%209.png}}]] | + | * Example [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_9|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_9.png}}]] |
* x and x2 are the two terms of the highest degree in the numerator and denominatorrespectively. After finding it, use the limits at infinity rule to determine the limit. | * x and x2 are the two terms of the highest degree in the numerator and denominatorrespectively. After finding it, use the limits at infinity rule to determine the limit. | ||
Line 57: | Line 61: | ||
Example #2: | Example #2: | ||
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2010|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2010.png}}]] | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_10|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_10.png}}]] |
- f(a) = f(0) = -20f(b) = f(60) =10 | - f(a) = f(0) = -20f(b) = f(60) =10 | ||
Line 65: | Line 69: | ||
**The Squeeze Theorem** | **The Squeeze Theorem** | ||
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2011|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2011.png}}]]that means f(x) equals h(x) and g(x) | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_11|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_11.png}}]]that means f(x) equals h(x) and g(x) |
- | ====== Unit 2 - Differentiation: | + | ====== Unit 2 - Differentiation: |
**What is a derivative? | **What is a derivative? | ||
Line 75: | Line 79: | ||
* The derivative of f(x) is denoted as f’(x) or | * The derivative of f(x) is denoted as f’(x) or | ||
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2012|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2012.png}}]]**Derivatives as Limits** | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_12|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_12.png}}]] |
+ | **Derivatives as Limits** | ||
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2013|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2013.png}}]]**Steps to find derivatives as limits:** | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_13|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_13.png}}]] |
+ | **Steps to find derivatives as limits:** | ||
- Identify the form of the derivative first (look at the image above)… is it form a? b? c? | - Identify the form of the derivative first (look at the image above)… is it form a? b? c? | ||
Line 89: | Line 95: | ||
**Rules of Differentiation** | **Rules of Differentiation** | ||
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2014|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2014.png}}]][[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2015|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2015.png}}]][[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2016|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2016.png}}]]**Derivatives of Trigonometric Functions: | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_14|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_14.png}}]][[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_15|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_15.png}}]][[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_16|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_16.png}}]]**Derivatives of Trigonometric Functions: |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2017|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2017.png}}]] | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_17|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_17.png}}]] |
+ | * HINT: If the original function starts with C, then the derivative is negative! | ||
* Example: cosx, cotx, & cscx | * Example: cosx, cotx, & cscx | ||
**Derivative Rule for LN** | **Derivative Rule for LN** | ||
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2018|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2018.png}}]] | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_18|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_18.png}}]] |
+ | * HINT: [Derive over copy] | ||
* Example: h(x) = ln(2x^2 + 1) | * Example: h(x) = ln(2x^2 + 1) | ||
* First derive 2x^2 + 1. That would be 4x! And then put that over theoriginal function, which would be 2x^2 + 1. | * First derive 2x^2 + 1. That would be 4x! And then put that over theoriginal function, which would be 2x^2 + 1. | ||
- | * Your answer would then be 4x%%/(%%2x^2 + 1) | + | * Your answer would then be 4x%%_(%%2x^2 + 1) |
**Deriving Exponential Functions** | **Deriving Exponential Functions** | ||
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2019|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2019.png}}]]**Continuity** | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_19|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_19.png}}]] |
+ | |||
+ | **Continuity** | ||
A function f is continuous at “c” if: | A function f is continuous at “c” if: | ||
Line 130: | Line 140: | ||
Example: | Example: | ||
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2020|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2020.png}}]][[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2021|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2021.png}}]]====== Unit 3 - Differentiation: | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_20|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_20.png}}]][[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_21|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_21.png}}]] |
+ | ====== Unit 3 - Differentiation: | ||
**The Chain Rule** | **The Chain Rule** | ||
Line 136: | Line 147: | ||
The chain rule helps us find the derivative of a composite function. For the formula, g’(x)\\ would be the chain.\\ | The chain rule helps us find the derivative of a composite function. For the formula, g’(x)\\ would be the chain.\\ | ||
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2022|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2022.png}}]]Example: | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_22|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_22.png}}]]Example: |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2023|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2023.png}}]]**General Rule Power** | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_23|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_23.png}}]]**General Rule Power** |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2024|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2024.png}}]]We use the general rule power when finding the **derivative of a function that is raised to the\\ nth power\\ **. In the formula given, f’(x) is the chain. | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_24|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_24.png}}]]We use the general rule power when finding the **derivative of a function that is raised to the\\ nth power\\ **. In the formula given, f’(x) is the chain. |
**Implicit Differentiation** | **Implicit Differentiation** | ||
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2025|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2025.png}}]]**Inverse Trig Functions: Differentiation** | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_25|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_25.png}}]]**Inverse Trig Functions: Differentiation** |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2026|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2026.png}}]]Example: | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_26|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_26.png}}]]Example: |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2027|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2027.png}}]][[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2028|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2028.png}}]]**Derivatives of Inverse Functions** | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_27|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_27.png}}]][[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_28|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_28.png}}]]**Derivatives of Inverse Functions** |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2029|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2029.png}}]][[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2030|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2030.png}}]]**Higher-Order Derivatives** | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_29|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_29.png}}]][[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_30|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_30.png}}]]**Higher-Order Derivatives** |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2031|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2031.png}}]]====== Unit 4 - Contextual Applications of Differentiation ====== | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_31|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_31.png}}]] |
+ | ====== Unit 4 - Contextual Applications of Differentiation ====== | ||
**Particle Motion** | **Particle Motion** | ||
Line 173: | Line 185: | ||
* Example: s(t)=6t^3 -4t^2 → v(t)=18t^2 -8t → a(t)=36t-8 | * Example: s(t)=6t^3 -4t^2 → v(t)=18t^2 -8t → a(t)=36t-8 | ||
- | **Particle Moving | + | **Particle Moving |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2032|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2032.png}}]] | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_32|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_32.png}}]] |
* A particle is moving away from the origin when its position and velocity have the samesigns, | * A particle is moving away from the origin when its position and velocity have the samesigns, | ||
- | **Particle Speeding | + | **Particle Speeding |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2033|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2033.png}}]] | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_33|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_33.png}}]] |
* A particle is slowing down (speed is decreasing) if the velocity and acceleration haveopposite signs at the point. | * A particle is slowing down (speed is decreasing) if the velocity and acceleration haveopposite signs at the point. | ||
Line 222: | Line 234: | ||
**Related Rates: Algebraic** | **Related Rates: Algebraic** | ||
- | Example: A point moves along the curve y = 2x^2 - 1 in which y decreases at the rate of 2 units\\ per second. What rate is x changing when x = -3/2?\\ | + | Example: A point moves along the curve y = 2x^2 - 1 in which y decreases at the rate of 2 units\\ per second. What rate is x changing when x = -3_2?\\ |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2034|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2034.png}}]]**Related Rates: Circle** | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_34|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_34.png}}]]**Related Rates: Circle** |
- | Example: The radius of a circle is increasing at a rate of 3cm/sec. How fast is the circumference\\ of the circle changing? | + | Example: The radius of a circle is increasing at a rate of 3cm_sec. How fast is the circumference\\ of the circle changing? |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2035|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2035.png}}]]**Related Rates: Triangle** | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_35|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_35.png}}]]**Related Rates: Triangle** |
- | Example: A 13ft ladder is leaning against a wall. If the top of the ladder slips down the wall at a\\ rate of 2 ft/s, how fast will the ladder be moving away from the wall when the top is 5ft above\\ the ground? | + | Example: A 13ft ladder is leaning against a wall. If the top of the ladder slips down the wall at a\\ rate of 2 ft_s, how fast will the ladder be moving away from the wall when the top is 5ft above\\ the ground? |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2036|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2036.png}}]]**Related Rates: Cube** | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_36|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_36.png}}]]**Related Rates: Cube** |
- | Example: The volume of a cube is increasing at a rate of 10cm^3/min. How fast is the surface area\\ increasing when the length of an edge is 30cm? | + | Example: The volume of a cube is increasing at a rate of 10cm^3_min. How fast is the surface area\\ increasing when the length of an edge is 30cm? |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2037|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2037.png}}]]**Related Rates: Right Cylinder** | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_37|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_37.png}}]]**Related Rates: Right Cylinder** |
- | Example: The radius of a right circular cylinder increases at the rate of 0.1cm/ | + | Example: The radius of a right circular cylinder increases at the rate of 0.1cm_min |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2038|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2038.png}}]]**Related Rates: Sphere** | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_38|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_38.png}}]]**Related Rates: Sphere** |
- | Example: As a balloon in the shape of a sphere is being blown up, the volume is increasing at a\\ rate of 4in3/s. At what rate is the radius increasing when the radius is 1 inch.\\ | + | Example: As a balloon in the shape of a sphere is being blown up, the volume is increasing at a\\ rate of 4in3_s. At what rate is the radius increasing when the radius is 1 inch.\\ |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2039|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2039.png}}]]**Related Rates: Circumference** | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_39|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_39.png}}]]**Related Rates: Circumference** |
- | Example: What is the value of the circumference of a circle at the instant when the radius is\\ increasing at 1/6 the rate the area is increasing? | + | Example: What is the value of the circumference of a circle at the instant when the radius is\\ increasing at 1_6 the rate the area is increasing? |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2040|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2040.png}}]]**L’Hopital’s Rule** | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_40|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_40.png}}]]**L’Hopital’s Rule** |
- | Let f and g be continuous and differentiable functions on an open interval (a,b). If the limit of\\ f(x) and g(x) as x approaches c produces the indeterminate form 0/0 or ∞/∞ then, | + | Let f and g be continuous and differentiable functions on an open interval (a,b). If the limit of\\ f(x) and g(x) as x approaches c produces the indeterminate form 0_0 or ∞_∞ then, |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2041|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2041.png}}]]====== Unit 5 - Analytical Applications of Differentiation ====== | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_41|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_41.png}}]]====== Unit 5 - Analytical Applications of Differentiation ====== |
**Mean Value Theorem** | **Mean Value Theorem** | ||
Line 258: | Line 270: | ||
If f(x) is a function that is **continuous on the closed intervals [a,b] and differentiable on the\\ open interval (a,b),\\ ** then there must exist a value **c between (a,b)** | If f(x) is a function that is **continuous on the closed intervals [a,b] and differentiable on the\\ open interval (a,b),\\ ** then there must exist a value **c between (a,b)** | ||
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2042|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2042.png}}]] | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_42|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_42.png}}]] |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2043|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2043.png}}]]**Function Increasing or Decreasing** | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_43|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_43.png}}]]**Function Increasing or Decreasing** |
* f(x) is increasing when f’(x) is positive | * f(x) is increasing when f’(x) is positive | ||
Line 268: | Line 280: | ||
**Extreme Value Theorem**\\ If f(x) is continuous on a closed interval [a,b], then f(x) has both a minimum and maximum on the interval.\\ | **Extreme Value Theorem**\\ If f(x) is continuous on a closed interval [a,b], then f(x) has both a minimum and maximum on the interval.\\ | ||
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2044|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2044.png}}]](Absolute max on top and absolute min on bottom) | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_44|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_44.png}}]](Absolute max on top and absolute min on bottom) |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2045|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2045.png}}]]**First Derivative Test** | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_45|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_45.png}}]]**First Derivative Test** |
For first derivative tests, **derive the function once and set it to 0**. After that, **find the zeros** and\\ plug them into a number line. Using your derived function, plug-in numbers before and after\\ your constant (the zeros of the function) to see if it becomes negative or positive, as shown\\ below.\\ | For first derivative tests, **derive the function once and set it to 0**. After that, **find the zeros** and\\ plug them into a number line. Using your derived function, plug-in numbers before and after\\ your constant (the zeros of the function) to see if it becomes negative or positive, as shown\\ below.\\ | ||
Line 278: | Line 290: | ||
* If it’s negative, constant, positive then it’s a **relative minimum** | * If it’s negative, constant, positive then it’s a **relative minimum** | ||
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2046|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2046.png}}]]**Concavity** | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_46|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_46.png}}]]**Concavity** |
* The graph of f is concave up when f’(x) is increasing | * The graph of f is concave up when f’(x) is increasing | ||
Line 288: | Line 300: | ||
* If f’’(x) is negative then the graph of f is concave down | * If f’’(x) is negative then the graph of f is concave down | ||
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2047|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2047.png}}]] | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_47|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_47.png}}]] |
* Occurs when f(x) changes concavity | * Occurs when f(x) changes concavity | ||
* Determined by a sign change for f’’(x) | * Determined by a sign change for f’’(x) | ||
Line 296: | Line 308: | ||
Example: | Example: | ||
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2048|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2048.png}}]]**Critical Numbers** | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_48|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_48.png}}]]**Critical Numbers** |
* Critical numbers are **points on the graph of a function where there’s a change in direction.** | * Critical numbers are **points on the graph of a function where there’s a change in direction.** | ||
Line 302: | Line 314: | ||
* To **find critical numbers**, you use the **first derivative of the function and set it to zero.** | * To **find critical numbers**, you use the **first derivative of the function and set it to zero.** | ||
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2049|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2049.png}}]]====== Unit 6 - Integration and Accumulation of Change ====== | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_49|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_49.png}}]]====== Unit 6 - Integration and Accumulation of Change ====== |
**Riemann Sums** | **Riemann Sums** | ||
Line 308: | Line 320: | ||
You use Riemann sums to find the actual area underneath the graph of f(x). | You use Riemann sums to find the actual area underneath the graph of f(x). | ||
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2050|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2050.png}}]][[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2051|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2051.png}}]]**Trapezoidal Reimann Sum** | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_50|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_50.png}}]][[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_51|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_51.png}}]]**Trapezoidal Reimann Sum** |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2052|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2052.png}}]]**Integration** | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_52|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_52.png}}]]**Integration** |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2053|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2053.png}}]]The area under the curve of derivatives of F from A to B is equal to the change in y-values of the\\ function F from A to B, given f is:\\ | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_53|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_53.png}}]]The area under the curve of derivatives of F from A to B is equal to the change in y-values of the\\ function F from A to B, given f is:\\ |
* Continuous in interval [a,b] | * Continuous in interval [a,b] | ||
Line 324: | Line 336: | ||
* Detonated by an integral sign: ∫ | * Detonated by an integral sign: ∫ | ||
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2054|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2054.png}}]] | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_54|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_54.png}}]] |
* dx = variable of integration | * dx = variable of integration | ||
Line 336: | Line 348: | ||
**Reminder: | **Reminder: | ||
- | **Basic Integration Rules (w/ examples)** | + | **Basic Integration Rules (w_ examples)** |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2055|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2055.png}}]]**Antiderivative Trig Function** | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_55|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_55.png}}]]**Antiderivative Trig Function** |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2056|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2056.png}}]]C is still a constant when multiplied by 2 (a constant multiplied by a constant is still a constant) | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_56|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_56.png}}]]C is still a constant when multiplied by 2 (a constant multiplied by a constant is still a constant) |
* HINT: How I memorize antiderivatives by using derivatives of trigonometric functions | * HINT: How I memorize antiderivatives by using derivatives of trigonometric functions | ||
- | * EX: d/dx sinx = cosx and for the antiderivative, | + | * EX: d_dx sinx = cosx and for the antiderivative, |
- | * EX: d/dx cscx = -cscxcotx and for the antiderivative, | + | * EX: d_dx cscx = -cscxcotx and for the antiderivative, |
**Integration by U-substitution** | **Integration by U-substitution** | ||
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2057|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2057.png}}]][[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2058|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2058.png}}]][[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2059|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2059.png}}]]**Natural Log Function for Integration (Log rule for integration)** | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_57|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_57.png}}]][[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_58|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_58.png}}]][[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_59|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_59.png}}]]**Natural Log Function for Integration (Log rule for integration)** |
Use this rule when ‘x’ becomes DNE | Use this rule when ‘x’ becomes DNE | ||
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2060|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2060.png}}]][[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2060|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2060.png}}]][[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2061|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2061.png}}]]**Integrals of the 6 Basic Trig Functions** | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_60|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_60.png}}]][[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_60|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_60.png}}]][[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_61|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_61.png}}]]**Integrals of the 6 Basic Trig Functions** |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2062|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2062.png}}]] | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_62|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_62.png}}]] |
* If you work it out, it looks like this: | * If you work it out, it looks like this: | ||
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2063|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2063.png}}]][[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2064|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2064.png}}]]**Integration rules for “e”** | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_63|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_63.png}}]][[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_64|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_64.png}}]]**Integration rules for “e”** |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2065|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2065.png}}]]● With e, it’s just the same thing as regular u-substitution but with the additional ‘e’. | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_65|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_65.png}}]]● With e, it’s just the same thing as regular u-substitution but with the additional ‘e’. |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2066|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2066.png}}]][[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2067|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2067.png}}]]**Integration Rule for Exponential Functions** | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_66|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_66.png}}]][[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_67|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_67.png}}]]**Integration Rule for Exponential Functions** |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2068|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2068.png}}]]====== Unit 7 - Differential Equations ====== | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_68|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_68.png}}]]====== Unit 7 - Differential Equations ====== |
**Differential Equations (Separate the integral)** | **Differential Equations (Separate the integral)** | ||
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2069|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2069.png}}]][[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2070|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2070.png}}]][[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2071|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2071.png}}]]**Differential Equation with Initial condition** | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_69|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_69.png}}]][[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_70|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_70.png}}]][[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_71|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_71.png}}]]**Differential Equation with Initial condition** |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2072|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2072.png}}]]**Slope Field** | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_72|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_72.png}}]]**Slope Field** |
- | A visual depiction of a differential equation of dy/dx. | + | A visual depiction of a differential equation of dy_dx. |
* Example of what a slope field looks like | * Example of what a slope field looks like | ||
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2073|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2073.png}}]]====== Unit 8 – Applications of Integration ====== | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_73|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_73.png}}]]====== Unit 8 – Applications of Integration ====== |
**Average Value** | **Average Value** | ||
Line 384: | Line 396: | ||
* After that, **divide the answer by the length of the interval** | * After that, **divide the answer by the length of the interval** | ||
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2074|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2074.png}}]]Total Displacement | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_74|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_74.png}}]]Total Displacement |
* The difference between the starting position and ending position | * The difference between the starting position and ending position | ||
Line 394: | Line 406: | ||
* Formula: | * Formula: | ||
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2075|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2075.png}}]][[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2076|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2076.png}}]]**Total Distance** | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_75|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_75.png}}]][[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_76|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_76.png}}]]**Total Distance** |
* Total distance traveled by a particle is the sum of the amounts it displaces betweenthe start, all of the stop(s), and the end. | * Total distance traveled by a particle is the sum of the amounts it displaces betweenthe start, all of the stop(s), and the end. | ||
Line 402: | Line 414: | ||
* Formula: | * Formula: | ||
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2077|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2077.png}}]][[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2078|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2078.png}}]]**Area of a Region Between Two Curves** | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_77|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_77.png}}]][[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_78|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_78.png}}]]**Area of a Region Between Two Curves** |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2079|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2079.png}}]]**The Disk Method** | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_79|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_79.png}}]]**The Disk Method** |
If a region in the plane **revolves about a line, the resulting solid is a solid of revolution, | If a region in the plane **revolves about a line, the resulting solid is a solid of revolution, | ||
Line 410: | Line 422: | ||
* **Rotate Around x-axis** | * **Rotate Around x-axis** | ||
* The horizontal axis of revolution | * The horizontal axis of revolution | ||
- | * [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2080|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2080.png}}]] | + | * [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_80|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_80.png}}]] |
* **Rotate Around y-axis** | * **Rotate Around y-axis** | ||
* The **vertical axis of revolution** | * The **vertical axis of revolution** | ||
- | * [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2081|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2081.png}}]] | + | * [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_81|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_81.png}}]] |
**The Washer Method** | **The Washer Method** | ||
* Horizontal Line of Rotation: | * Horizontal Line of Rotation: | ||
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2082|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2082.png}}]] | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_82|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_82.png}}]] |
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2083|{{AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61:Untitled%2083.png}}]]**The Washer Method Calculating Volume Using Integration** | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_83|{{AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61:Untitled_83.png}}]]**The Washer Method Calculating Volume Using Integration** |
**Step One:** Draw a picture of your graph**→** **shade appropriate region** | **Step One:** Draw a picture of your graph**→** **shade appropriate region** | ||
Line 434: | Line 446: | ||
**Step Three:** **Set up your Integral** | **Step Three:** **Set up your Integral** | ||
- | [[AP%20Calc%20AB%20Study%20Guide%20f289051ba2044b4ab01d25945296aa61: | + | [[AP_Calc_AB_Study_Guide_f289051ba2044b4ab01d25945296aa61: |